(+)-camphorsulfonate 1a and products derived therefrom possess a high degree (>90%) of enantiomeric purity.

Following the above described sequence, the camphorsulfonate 1b was prepared.⁶ Fractional crystallization from ethyl acetate afforded material of mp 157-159 °C, $[\alpha]^{25}$ +6.4° (c 3.25, CHCl₃). Reduction-fragmentation with lithium aluminum hydride gave the diene **2b** [mp 59-61 °C, $[\alpha]^{22}$ _D -52.6° (c 6.45, EtOH)] and alcohol 5b. Acetylation of 2b and Li/NH₃ reduction yielded the diene **4b**, $[\alpha]^{22}_{D} - 90^{\circ}$ (c 3.28, CHCl₃). Selective hydroboration-oxidation followed by decarbonylation, as before, yielded (+)-trans-1,2-dimethylcycloundecene [**6b**, bp 190-205 °C at 750 Torr, $[\alpha]^{22}$ +29.1° (c 1.46, CHCl₃)].¹³

Enone **9b** [bp 80-85 °C at 0.2 Torr, $[\alpha]^{25}$ +109° (c 4.7, CH₃OH)], obtained through PCC oxidation of alcohol **5b**,⁷ showed a similar ORD curve to that of 9a indicating that it too possesses the R configuration. Thus olefins 2b-4b and 6b-8b must have the S configuration as shown.³

Efforts to prepare the bicyclo [7.3.1] tridecanediol 1c (X = OH) met with unexpected problems, so we employed asymmetric hydroboration to assess the optical stability of trans-1,2-dimethylcyclododecene. Accordingly, treatment of racemic trans-1,2-dimethylcyclododecene (6c) with 0.5 mol equiv of monoisopinocampheylborane,14 followed by oxidation with alkaline H₂O₂, afforded a mixture of alcohol 10c [25% yield, mp 68-73 °C, $[\alpha]^{22}_{D}$ +14.9° (c 14.5, CH₂Cl₂)] and recovered racemic dimethylcyclododecene, $[\alpha]^{22}$ D 0°. In contrast, racemic trans-1,2-dimethylcyclodecene (6a) afforded enriched (-)-trans-1,2-dimethylcyclododecene [33% yield, $[\alpha]^{22}$ D -18° (c 1.3, CH₂Cl₂)] upon similar treatment. We therefore conclude that trans-1,2-dimethylcyclododecene must racemize at or below room temperature.

These results show that methyl substituents on the double bond permit optically stable trans-cycloundecenes to be prepared.¹³ Presumably bulkier substituents such as tert-butyl would further increase the optical stability of trans-cycloalkenes and thus enable isolation of even larger ring optically active homologs.

Acknowledgment. We thank the National Science Foundation for support of this work through a research grant (CHE-7801755).

References and Notes

- (1) Marshall, J. A.; Lewellyn, M. E. J. Am. Chem. Soc. 1977, 99, 3508-3510. The name derives from the sandwich arrangement of the bridging methylene chains and the double bond ("ene" between "anes") in the lower homologues (e.g., II, *a*, *b* = 8~t0).
 (2) Marshall, J. A.; Chung, K.-H. *J. Org. Chem.* **1979**, *44*, 1566–1567.
- Marshall, J. A.; Chung, K.-H. J. *Org. Chem.*, 1979, 44, 1856–1857.
 The rules for assigning absolute configuration to *trans*-cycloalkenes are delineated in Cahn, R. S.; Ingold, C. K.; Prelog, V. *Angew. Chem., Int. Ed. Engl.* **1966**, *5*, 385–416. See p 402.
 (a) Cope, A. C.; Ganelin, C. R.; Johnson, H. W., Jr.; Van Auken, T. V.; Winkler, H. J. S. *J. Am. Chem. Soc.* **1963**, *85*, 3276–3279. (b) Binsch, G.; Roberts, J. D. *Ibid.* **1965**, *87*, 5157–5162.
- (4)
- (5) An alternative approach involves photoisomerization of the corresponding (Z)-bicycloaikene: Nakazaki, M.; Yamamoto, K.; Yanagi, J. J. Am. Chem. Soc. 1979, 101, 147–151.
- (6) Marshall, J. A.; Scanio, C. J. V.; Iburg, W. J. J. Org. Chem. 1967, 32, 3750-3754
- Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647-2650. (7)
- (8) Cf. Dawson, D. J.; Ireland, R. E. Tetrahedron Lett. 1968, 1899–1901.
 (9) Marshall, J. A.; Lewellyn, M. E. J. Org. Chem. 1977, 42, 1311–1315.
 (10) Cf. Snatzke, G. Tetrahedron 1965, 21, 413–439.

- (11) Hill et al. (Hill, R. K.; Fracheboud, M. G., Sawada, S.; Carlson, R. M.; Yan, S.-J. Tetrahedron Lett. 1978, 945-948) have partially resolved 2-isopropylidene-5,9-dimethyl-(E,E)-4,8-cyclodecadienone (germacrone) and the related alcohol, but attempts to prepare optically active 1-methyl-(E.E)-1,5-cyclodecadiene failed. The additional ring substituents present in the germacrone system must raise the rotational barrier relative to unsubstituted cyclodecenes.
- (12) facam = 3-(trifluoromethylhydroxymethylene)-d-camphorato. Cf. Kime, K. A.; Sievers, R. E. Aldrichim. Acta 1977, 10, 54-62.
- (13) Olefin 6b showed no loss of optical activity after heating for 3 days at 100 °C and two distillations (short path) at 190–205 °C. (14) Brown, H. C.; Schwier, J. R.; Singaram, B. J. Org. Chem. 1978, 43, 4395–4397.

James A. Marshall,* Tim R. Konicek, Katherine E. Flynn Department of Chemistry, Northwestern University Evanston, Illinois 60201 Received January 7, 1980

Carbon-13 Chemical Shifts of Alkyne Ligands as Variable Electron Donors in Monomeric Molybdenum and Tungsten Complexes

Sir:

The role of η^2 -alkyne ligands in mononuclear metal complexes is commonly considered to parallel the Dewar-Chatt-Duncanson bonding model.¹ Properties of $(\eta^2$ -alkyne)tungsten(II) complexes have recently been interpreted as manifesting electron donation not only from the acetylene π_{\parallel} orbital but also from the filled acetylene π_{\perp} orbital to tungsten.² We wish to communicate an empirical correlation between the number of electrons formally donated per alkyne ligand (N)compatible with an inert gas configuration for the metal center and the chemical shift of the bound alkyne carbon nuclei for a series of ten monomeric alkyne complexes of molybdenum and tungsten. The N values listed in Table I can be rationalized by molecular orbital considerations in each case.

The observed relationship between δ and N can be illustrated

Table I. Carbon-13 Chemical Shifts of Alkyne Carbons Bound to Molybdenum(II) and Tungsten(II)

complex	$\delta(\mathbf{R}^{13}\mathbf{C}\equiv\mathbf{C}\mathbf{R})^a$	δ_{av}	N ^b	ref
$W(CO)(detc)_2(HC \equiv CH)(1)$	206.1, 207.1	206.6	4	this work
$W(CO)(detc)_2(HC \equiv CPh)^c$ (2)	205.7	205.7	4	this work
$(\pi - C_5 H_5) W(CO)(CH_3)(HC \equiv CH) (3)$	192.5, 187.4	190.0	4	d
$Mo(CO)(dmtc)_2(HC \equiv CH)$ (4)	203.7	203.7	4	this work
$Mo(CO)(dmtc)_2(HC \equiv CPh)^c$ (5)	205.3	205.3	4	this work
$W(CO)(CH_3CH_2C \equiv CCH_2CH_3)_3$ (6)	191.1, 170.8	181.0	31/3	this work
$[(\pi - C_5 H_5) W(CO)(CH_3 C \equiv CC_4 H_9)_2]^+$ (7)	162.2, 159.4, 144.8, 141.5	152.0	3	е
$Mo(detc)_2(HC \equiv CPh)_2^c$ (8)	183.2, 177.1	180.2	3	this work
$(\pi - C_5 H_5)_2 Mo(HC \equiv CH)$ (9)	117.7	117.7	2	f
$(\pi - C_5 H_5)_2 \operatorname{Mo}(CH_3 C \equiv CCH_3) (10)$	115.3	115.3	2	this work

^a Relative to Me₄Si. ^b Formal number of electrons donated per alkyne ligand (see text). ^c Only the H¹³C≡ was observed owing to NOE effects. ^d Alt, H. G. J. Organomet. Chem. 1977, 127, 349. ^e Watson, P. L.; Bergman, R. G. J. Am. Chem. Soc. 1979, 101, 2055. ^f Thomas, J. L. Inorg. Chem. 1978, 17, 1507.

by considering three molybdenum(II)-alkyne complexes with N values of 2, 3, and 4, respectively. An apodictic case of two-electron donor behavior by acetylene is provided by 9, while the 12-electron Mo(dtc)₂ fragment of 8 requires an average of three electrons from each of the two alkyne ligands to conform to the effective atomic number rule. Similar reasoning requires that the single acetylene ligand in 4 donate four electrons to effectively complement the $Mo(CO)(dtc)_2$ moiety. The C-13 chemical shifts of 117.7, 180.2, and 203.7 observed for these bound alkynes, respectively, span a range of >80 ppm and reflect a monotonic dependence on the number of electrons formally donated from the alkyne ligand to the metal. The correlation between δ and N is not linear, nor is there any reason to expect a linear relationship since a continuum of chemical shifts is possible while N is restricted to values calculated from the total number of acetylene electrons donated divided by the number of coordinated alkynes. Nonetheless a plot of δ vs. N (Figure 1) implies that δ is an observable which is highly sensitive to the nature of the metal-alkyne bond and provides experimental data which bears directly on the role of alkyne ligands in monomeric coordination complexes.

The N values listed in Table I are consistent with the results of elementary molecular orbital analyses. Two coparallel cis alkyne ligands can each donate two electrons from their respective π_{\parallel} orbitals into vacant σ receptor metal orbitals. Donation from the two π_{\perp} orbitals is restricted because both alkyne π_{\perp} orbitals overlap the same metal $d\pi$ orbital and a three-center four-electron interaction results. From a group theoretical standpoint the local C_{2v} symmetry of the *cis*-M(RC=CR)₂ fragment produces π_{\perp} orbital combinations of a_1 and b_2 symmetry (see below). The a_1 combination overlaps effectively with a single $d\pi$ orbital while the b_2 combination is nonbonding owing to the absence of a suitable metal orbital of b_2 symmetry. The net result is stabilization of $4\pi_{\parallel}$ and $2\pi_{\perp}$ electrons for an average donation of three electrons per alkyne.

Figure 1. A plot of alkyne carbon-13 chemical shift (parts per million relative to Me_4Si) vs. formal number of electrons donated per alkyne ligand (N).

King accurately described the bonding scheme applicable to **6** over a decade ago^3 (a total alkyne donation of ten electrons formally corresponds to $3\frac{1}{3}$ electrons per unsaturated ligand⁴), but the W(CO)(RC=CR)₃ structural unit⁵ was too esoteric to substantially alter prevailing tenets concerning the possibility of realizing effective four-electron donation to a single metal center. Two-electron donation from an olefin or an alkyne involves only carbon p orbitals located in the metalacetylene or metal-olefin plane and conveys the idea of π_{\parallel} donation coupled with π_{\parallel}^* acceptance. Four-electron donation retains these π_{\parallel} and π_{\parallel}^* interactions while π -type donation from π_{\perp} occurs to supplement the olefinic type bonding. Overlap values responsible for σ , π , and δ metal-alkyne interactions have been calculated for $Mo(CO)(HC \equiv CH)(dtc)_2$. As expected the σ overlap is greatest (derived from π_{\parallel}), but the overlap of d_{xy} with π_{\perp} (0.10) is the same magnitude as the overlap of d_{xz} with π_{\parallel}^* . When one considers that the $d_{xz} - \pi_{\parallel}^*$ interaction corresponds to the retrodative bonding scheme invoked to account for the stability of metal-olefin complexes the potential impact of donation from π_{\perp} is evident.⁶

Donation of electrons from both π orbitals of alkyne ligands to a single metal center is only significant to the extent that it constitutes a viable chemical concept which is reflected in molecular properties. Reactivity patterns of several complexes listed in Table I are noteworthy when viewed in the context of four-electron donation from alkyne ligands. (1) The ligand substitution reaction used to prepare M(CO)(RC=CR)(dtc)₂ involves the displacement of *two* classical two-electron donor ligands by a single acetylene molecule.² Note that phosphine substitution of W(CO)₃(dtc)₂ under the same conditions leads to replacement of only one two-electron ligand. (2) Acetylene reacts with W(CO)₃(dtc)₂ quantitatively in minutes; no detectable reaction occurs with ethylene over a period of days. (3) Sixteen-electron complexes of Mo(II) and W(II) carbonyls are expected to behave as very reactive electrophiles;⁷ M(CO)(RC=CR)(dtc)₂ compounds resist nucleophilic attack even in refluxing THF. Examples of olefin analogs of alkyne complexes are known only for cases where N is equal to 2: $(\pi$ -C₅H₅)₂M(C₂H₄),⁸ [$(\pi$ -C₅H₅)Mo(π -C₆H₆)(C₂H₄)]^{+,9} [PtCl₃(C₂H₄)]⁻¹⁰, and PtL₂(C₂H₄).¹¹ No olefin analogs of the "electron deficient" ¹² alkyne complexes (N > 2) have been synthesized.

We are not aware of any other ligand which exhibits C-13 chemical shifts spanning a range of nearly 100 ppm when bound to the same transition metal ion in the same oxidation state. In our judgment the major factor responsible for the extraordinary chemical-shift variations of metal-bound acetylenic carbon nuclei stems from the unique ability of the alkyne ligand to function as a variable electron donor. The implications of variable electron donation from alkyne ligands are of potential importance in organometallic reactions involving facile interplay between 16- and 18-electron complexes. Known examples of variable electron donor ligands include nitrosyl¹³ and allyl,¹⁴ and the role of these ligands in catalytic reaction cycles¹⁵ underscores the significance of identifying and investigating the electronic flexibility of acetylenic ligands.

Acknowledgments. This work was supported by a Cottrell Research Grant from Research Corporation and by a grant from the North Carolina Science and Technology Committee. Helpful discussions with M. S. Brookhart are gratefully acknowledged.

References and Notes

- (1) (a) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71. (b) Chatt, J.; Duncanson, L. H. J. Chem. Soc. 1953, 2939.
- (2) (a) Templeton, J. L.; Ward, B. C. *J. Am. Chem. Soc.*, **1980**, *102*, 1532. (b) Ricard, L.; Weiss, R.; Newton, W. E.; Chen, G. J.-J.; McDonald, J. W. *Ibid.* **1978**, *100*, 1318.
- (3) King, R. B. Inorg. Chem. 1968, 7, 1044.
- (4) The pseudotetrahedral geometry of W(CO)(RC=CR)₃ accommodates three σ bonds with six electrons from the π_{\parallel} alkyne orbitals, but the $C_{3\nu}$ symmetry dictates that only two metal d π orbitals interact with the three filled π_{\perp} acetylene orbitals (see ref 3).
- (5) Laine, R. M.; Moriarty, R. E.; Bau, R. J. Am. Chem. Soc. 1972, 94, 1402.
- (6) An additional point which emphasizes the feasibility of analyzing chemical properties based on electron donation from the acetylene π_⊥ orbital follows from comparison with metal-carbonyl bonding. Although both σ and π metal-carbon interactions are important for an MCO unit, much of the chemistry of metal-carbonyl complexes is rationalized in terms of metal donation into the vacant π* orbitals of the carbon monoxide ligand. The orientation and atomic identity of the orbitals constituting this π-type metal-carbonyl interaction are exactly those of the acetylene π_⊥ orbital with a metal dπ orbital.
 (7) (a) Davison, A.; McFarlane, W.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1962,
- (7) (a) Davison, A.; McFarlane, W.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1962, 3653. (b) Beck, W.; Schloter, K. Z Naturforsch., B 1978, 33, 1214.
- (8) Thomas, J. L. J. Am. Chem. Soc. 1973, 95, 1838.
- (9) Green, M. L. H.; Knight, J.; Segal, J. A. J. Chem. Soc., Dalton Trans. 1977, 2189.
- (10) (a) Chatt, J.; Guy, R. G.; Duncanson, L. A. J. Chem. Soc. 1961, 827. (b) Wunderlich, J. A.; Mellor, D. P. Acta Crystallogr. 1954, 7, 130.
- (11) (a) Chatt, J.; Rowe, G. A.; Williams, A. A. *Proc. R. Soc. London* 1957, 208.
 (b) Chatt, J.; Shaw, B. L.; Williams, A. A. *J. Chem. Soc.* 1962, 3269.
 (12) (a) Davidson, J. L.; Green, M.; Sharp, D. W. A.; Stone, F. G. A.; Welch, A.
- (12) (a) Davidson, J. L.; Green, M.; Sharp, D. W. A.; Stone, F. G. A.; Welch, A. J. J. Chem. Soc., Chem. Commun. 1974, 706. (b) Davidson, J. L.; Green, M., Stone, F. G. A.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1976, 738.
 (c) Bottrill, M.; Green, M. J. Am. Chem. Soc. 1977, 99, 5795. (d) Faller, J. W.; Murray, H. H. J. Organomet. Chem. 1979, 172, 171. (e) Howard, J. A. K.; Stansfield, R. F. D.; Woodward, P. J. Chem. Soc., Dalton Trans. 1976, 246.
- (13) Eisenberg, R.; Meyer, C. D. Acc. Chem. Res. 1975, 8, 26.
- (14) Green, M. L. H.; Nagy, P. L. I. Adv. Organomet. Chem. 1964, 2, 325.
 (15) Stuhl, L. S.; Rakowski DuBois, M.; Hirsekorn, F. J.; Bleeke, J. R.; Stevens, A. E.; Muetterties, E. L. J. Am. Chem. Soc. 1978, 100, 2405.

Joseph L. Templeton,* Bennett C. Ward

W. R. Kenan, Jr., Laboratory Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27514 Received December 10, 1979

The μ -H[Mo(CO)₄PMePh₂]₂⁻ Anion: An Example of Phosphine Enhancement of Metal-Metal Interaction

Sir:

Previous studies on the mechanism of μ -H[Mo(CO)₅]₂⁻ dimer disruption yielding neutral disubstituted Mo(CO)₄P₂ products led to the conclusion that at least one substitution of carbonyl by P on the *intact dimer* (anion 1 of Scheme I) must occur prior to dissociation of the X grouping.¹⁻³ Primary

substantive evidence for this conclusion was afforded by the isolation and exhaustive analytical, X-ray structural, and kinetic characterization of the PPh₃ monosubstituted dinuclear anion (2) as its Et_4N^+ salt.² Although the fragments [Mo(CO)₄P] and HMo(CO)₅⁻ might be proposed as reasonable precursors to the disubstituted neutral products from 2, there was no spectroscopic evidence for the possibly observable latter fragment and in fact kinetic data² supported the conversion of 2 into 3 via a CO dissociation—again from an intact dimer, 2.^{4.5} The intriguing possibility of isolation of disubstituted dinuclear bridging hydrides motivated an attempt at their syntheses, making use of the sterically less demanding ligands, PMePh₂ and P(CH₂)₆N₃.⁶

Compounds chemically analyzing as Et₄N⁺ [HMo₂- $(CO)_8P_2$]⁻ were obtained from the reaction of Et₄N⁺ μ -H[Mo(CO)₅]₂⁻ with a 10-fold excess of PMePh₂ or $P(CH_2)_6N_3$ in refluxing THF after reaction periods of 2-3 h. [Longer reaction periods led to the production of $P_2Mo(CO)_4$ neutral compounds.] Crystalline products in isolated yields of 10% for the PMePh₂ derivative and \sim 60% for the P(CH₂)₆N₃ derivative were obtained after filtration under N_2 , addition of hexane, and cooling. The ν (CO) IR spectrum [P = PMePh₂; ν (CO) 2021 (w), 1989 (w), 1906 (s), 1875 (sh), 1822 (m)] was not straightforwardly interpretable by symmetry arguments^{7,8} nor could the NMR hydride pattern (triplet centered at 11.75 ppm upfield from Me₄Si; with $J_{P-H} = 16.6$ Hz for P = PMePh₂) or the ³¹P NMR spectrum (doublet at 18.92 ppm upfield from 85% H₃PO₄, $J_{P-H} = 16.6 \text{ Hz})^9$ differentiate between disubstitution on one Mo center or monosubstitution of two Mo centers. An X-ray crystal structure analysis has confirmed the latter arrangement. The structural parameters given below demonstrate a singular facility of the μ -H-dinuclear anions to accommodate both the added electron density and the steric crowding resulting from two PMePh₂ substitutents in a manner advantageous to the Mo...Mo interaction.

A bright orange plate-like crystal of the compound was sealed under nitrogen in a thin-walled glass capillary. The space group is $P2_1/c$, the lattice parameters are a = 14.940

Scheme I

© 1980 American Chemical Society